Source code for golemflavor.fr

# author : S. Mandalia
#          s.p.mandalia@qmul.ac.uk
#
# date   : March 17, 2018

"""
Useful functions for the BSM flavor ratio analysis
"""

from __future__ import absolute_import, division, print_function

from functools import partial

import numpy as np

from golemflavor.enums import ParamTag, Texture
from golemflavor.misc import enum_parse, parse_bool

import mpmath as mp
mp.mp.dps = 100 # Computation precision

DTYPE  = np.float128
CDTYPE = np.complex256
PI     = np.arccos(DTYPE(-1))
SQRT   = np.sqrt
COS    = np.cos
SIN    = np.sin
ACOS   = np.arccos
ASIN   = np.arcsin
EXP    = np.exp

# DTYPE  = mp.mpf
# CDTYPE = mp.mpc
# PI     = mp.pi
# SQRT   = mp.sqrt
# COS    = mp.cos
# SIN    = mp.sin
# ACOS   = mp.acos
# ASIN   = mp.asin
# EXP    = mp.exp

MASS_EIGENVALUES = [7.40E-23, 2.515E-21]
"""SM mass eigenvalues."""

SCALE_BOUNDARIES = {
    3 : (-32, -20),
    4 : (-40, -24),
    5 : (-48, -27),
    6 : (-56, -30),
    7 : (-64, -33),
    8 : (-72, -36)
}
"""Boundaries to scan the NP scale for each dimension."""


[docs]def determinant(x): """Calculate the determininant of a 3x3 matrix. Parameters ---------- x : ndarray, shape = (3, 3) Returns ---------- float determinant Examples ---------- >>> print(determinant( >>> [[-1.65238188-0.59549718j, 0.27486548-0.18437467j, -1.35524534-0.38542072j], >>> [-1.07480906+0.29630449j, -0.47808456-0.80316821j, -0.88609356-1.50737308j], >>> [-0.14924144-0.99230446j, 0.49504234+0.63639805j, 2.29258915-0.36537507j]] >>> )) (2.7797571563274688+3.0841795325804848j) """ return (x[0][0] * (x[1][1] * x[2][2] - x[2][1] * x[1][2]) -x[1][0] * (x[0][1] * x[2][2] - x[2][1] * x[0][2]) +x[2][0] * (x[0][1] * x[1][2] - x[1][1] * x[0][2]))
[docs]def angles_to_fr(src_angles): """Convert angular projection of the source flavor ratio back into the flavor ratio. Parameters ---------- src_angles : list, length = 2 sin(phi)^4 and cos(psi)^2 Returns ---------- flavor ratios (nue, numu, nutau) Examples ---------- >>> print(angles_to_fr((0.3, 0.4))) (0.38340579025361626, 0.16431676725154978, 0.45227744249483393) """ sphi4, c2psi = list(map(DTYPE, src_angles)) psi = (0.5)*ACOS(c2psi) sphi2 = SQRT(sphi4) cphi2 = 1. - sphi2 spsi2 = SIN(psi)**2 cspi2 = 1. - spsi2 x = float(abs(sphi2*cspi2)) y = float(abs(sphi2*spsi2)) z = float(abs(cphi2)) return x, y, z
[docs]def angles_to_u(bsm_angles): """Convert angular projection of the mixing matrix elements back into the mixing matrix elements. Parameters ---------- bsm_angles : list, length = 4 sin(12)^2, cos(13)^4, sin(23)^2 and deltacp Returns ---------- unitary numpy ndarray of shape (3, 3) Examples ---------- >>> from fr import angles_to_u >>> print(angles_to_u((0.2, 0.3, 0.5, 1.5))) array([[ 0.66195018+0.j , 0.33097509+0.j , 0.04757188-0.6708311j ], [-0.34631487-0.42427084j, 0.61741198-0.21213542j, 0.52331757+0.j ], [ 0.28614067-0.42427084j, -0.64749908-0.21213542j, 0.52331757+0.j ]]) """ s12_2, c13_4, s23_2, dcp = list(map(DTYPE, bsm_angles)) dcp = CDTYPE(dcp) c12_2 = 1. - s12_2 c13_2 = SQRT(c13_4) s13_2 = 1. - c13_2 c23_2 = 1. - s23_2 t12 = ASIN(SQRT(s12_2)) t13 = ACOS(SQRT(c13_2)) t23 = ASIN(SQRT(s23_2)) c12 = COS(t12) s12 = SIN(t12) c13 = COS(t13) s13 = SIN(t13) c23 = COS(t23) s23 = SIN(t23) p1 = np.array([[1 , 0 , 0] , [0 , c23 , s23] , [0 , -s23 , c23]] , dtype=CDTYPE) p2 = np.array([[c13 , 0 , s13*EXP(-1j*dcp)] , [0 , 1 , 0] , [-s13*EXP(1j*dcp) , 0 , c13]] , dtype=CDTYPE) p3 = np.array([[c12 , s12 , 0] , [-s12 , c12 , 0] , [0 , 0 , 1]] , dtype=CDTYPE) u = np.dot(np.dot(p1, p2), p3) return u
[docs]def flat_angles_to_u(x): """Convert from angles to mixing elements.""" return abs(angles_to_u(x)).astype(np.float32).flatten().tolist()
[docs]def cardano_eqn(ham): """Diagonalise the effective Hamiltonian 3x3 matrix into the form h_{eff} = UE_{eff}U^{dagger} using the procedure in PRD91, 052003 (2015). Parameters ---------- ham : numpy ndarray of shape (3, 3) sin(12)^2, cos(13)^4, sin(23)^2 and deltacp Returns ---------- unitary numpy ndarray of shape (3, 3) Examples ---------- >>> import numpy as np >>> from fr import cardano_eqn >>> ham = np.array( >>> [[ 0.66195018+0.j , 0.33097509+0.j , 0.04757188-0.6708311j ], >>> [-0.34631487-0.42427084j, 0.61741198-0.21213542j, 0.52331757+0.j ], >>> [ 0.28614067-0.42427084j, -0.64749908-0.21213542j, 0.52331757+0.j ]] >>> ) >>> print(cardano_eqn(ham)) array([[-0.11143379-0.58863683j, -0.09067747-0.48219068j, 0.34276625-0.08686465j], [ 0.14835519+0.47511473j, -0.18299305+0.40777481j, 0.31906300+0.82514223j], [-0.62298966+0.07231745j, -0.61407815-0.42709603j, 0.03660313+0.30160428j]]) """ if np.shape(ham) != (3, 3): raise ValueError( 'Input matrix should be a square and dimension 3, ' 'got\n{0}'.format(ham) ) a = -np.trace(ham) b = DTYPE(1)/2 * ((np.trace(ham))**DTYPE(2) - np.trace(np.dot(ham, ham))) c = -determinant(ham) Q = (DTYPE(1)/9) * (a**DTYPE(2) - DTYPE(3)*b) R = (DTYPE(1)/54) * (DTYPE(2)*a**DTYPE(3) - DTYPE(9)*a*b + DTYPE(27)*c) theta = ACOS(R / SQRT(Q**DTYPE(3))) E1 = -DTYPE(2) * SQRT(Q) * COS(theta/DTYPE(3)) - (DTYPE(1)/3)*a E2 = -DTYPE(2) * SQRT(Q) * COS((theta - DTYPE(2)*PI)/DTYPE(3)) - (DTYPE(1)/3)*a E3 = -DTYPE(2) * SQRT(Q) * COS((theta + DTYPE(2)*PI)/DTYPE(3)) - (DTYPE(1)/3)*a A1 = ham[1][2] * (ham[0][0] - E1) - ham[1][0]*ham[0][2] A2 = ham[1][2] * (ham[0][0] - E2) - ham[1][0]*ham[0][2] A3 = ham[1][2] * (ham[0][0] - E3) - ham[1][0]*ham[0][2] B1 = ham[2][0] * (ham[1][1] - E1) - ham[2][1]*ham[1][0] B2 = ham[2][0] * (ham[1][1] - E2) - ham[2][1]*ham[1][0] B3 = ham[2][0] * (ham[1][1] - E3) - ham[2][1]*ham[1][0] C1 = ham[1][0] * (ham[2][2] - E1) - ham[1][2]*ham[2][0] C2 = ham[1][0] * (ham[2][2] - E2) - ham[1][2]*ham[2][0] C3 = ham[1][0] * (ham[2][2] - E3) - ham[1][2]*ham[2][0] N1 = SQRT(np.abs(A1*B1)**2 + np.abs(A1*C1)**2 + np.abs(B1*C1)**2) N2 = SQRT(np.abs(A2*B2)**2 + np.abs(A2*C2)**2 + np.abs(B2*C2)**2) N3 = SQRT(np.abs(A3*B3)**2 + np.abs(A3*C3)**2 + np.abs(B3*C3)**2) mm = np.array([ [np.conjugate(B1)*C1 / N1, np.conjugate(B2)*C2 / N2, np.conjugate(B3)*C3 / N3], [A1*C1 / N1, A2*C2 / N2, A3*C3 / N3], [A1*B1 / N1, A2*B2 / N2, A3*B3 / N3] ]) return mm
[docs]def normalize_fr(fr): """Normalize an input flavor combination to a flavor ratio. Parameters ---------- fr : list, length = 3 flavor combination Returns ---------- numpy ndarray flavor ratio Examples ---------- >>> from fr import normalize_fr >>> print(normalize_fr((1, 2, 3))) array([ 0.16666667, 0.33333333, 0.5 ]) """ return np.array(fr) / float(np.sum(fr))
def fr_argparse(parser): parser.add_argument( '--injected-ratio', type=float, nargs=3, required=False, help='Injected ratio if not using data' ) parser.add_argument( '--source-ratio', type=float, nargs=3, default=[1, 2, 0], help='Set the source flavor ratio for the case when you want to fix it' ) parser.add_argument( '--no-bsm', type=parse_bool, default='False', help='Turn off BSM terms' ) parser.add_argument( '--dimension', type=int, default=3, help='Set the new physics dimension to consider' ) parser.add_argument( '--texture', type=partial(enum_parse, c=Texture), default='none', choices=Texture, help='Set the BSM mixing texture' ) parser.add_argument( '--binning', default=[6e4, 1e7, 20], type=float, nargs=3, help='Binning for spectral energy dependance' )
[docs]def fr_to_angles(ratios): """Convert from flavor ratio into the angular projection of the flavor ratios. Parameters ---------- TODO(shivesh) """ fr0, fr1, fr2 = normalize_fr(ratios) cphi2 = fr2 sphi2 = (1.0 - cphi2) if sphi2 == 0.: return (0., 0.) else: cpsi2 = fr0 / sphi2 sphi4 = sphi2**2 c2psi = COS(ACOS(SQRT(cpsi2))*2) return (sphi4, c2psi)
NUFIT_U = angles_to_u((0.307, (1-0.02195)**2, 0.565, 3.97935)) """NuFIT mixing matrix (s_12^2, c_13^4, s_23^2, dcp)""" def params_to_BSMu(bsm_angles, dim, energy, mass_eigenvalues=MASS_EIGENVALUES, sm_u=NUFIT_U, no_bsm=False, texture=Texture.NONE, check_uni=True, epsilon=1e-7): """Construct the BSM mixing matrix from the BSM parameters. Parameters ---------- bsm_angles : list, length > 3 BSM parameters dim : int Dimension of BSM physics energy : float Energy in GeV mass_eigenvalues : list, length = 2 SM mass eigenvalues sm_u : numpy ndarray, dimension 3 SM mixing matrix no_bsm : bool Turn off BSM behaviour texture : Texture BSM mixing texture check_uni : bool Check the resulting BSM mixing matrix is unitary Returns ---------- unitary numpy ndarray of shape (3, 3) Examples ---------- >>> from fr import params_to_BSMu >>> print(params_to_BSMu((0.2, 0.3, 0.5, 1.5, -20), dim=3, energy=1000)) array([[ 0.18658169 -6.34190523e-01j, -0.26460391 +2.01884200e-01j, 0.67247096 -9.86808417e-07j], [-0.50419832 +2.14420570e-01j, -0.36013768 +5.44254868e-01j, 0.03700961 +5.22039894e-01j], [-0.32561308 -3.95946524e-01j, 0.64294909 -2.23453580e-01j, 0.03700830 +5.22032403e-01j]]) """ if np.shape(sm_u) != (3, 3): raise ValueError( 'Input matrix should be a square and dimension 3, ' 'got\n{0}'.format(sm_u) ) if not isinstance(bsm_angles, (list, tuple)): bsm_angles = [bsm_angles] z = 0.+1e-9 if texture is Texture.OEU: np_s12_2, np_c13_4, np_s23_2, np_dcp, sc2 = 0.5, 1.0, z, z, bsm_angles elif texture is Texture.OET: np_s12_2, np_c13_4, np_s23_2, np_dcp, sc2 = z, 0.25, z, z, bsm_angles elif texture is Texture.OUT: np_s12_2, np_c13_4, np_s23_2, np_dcp, sc2 = z, 1.0, 0.5, z, bsm_angles else: np_s12_2, np_c13_4, np_s23_2, np_dcp, sc2 = bsm_angles sc2 = np.power(10., sc2) sc1 = sc2 / 100. mass_matrix = np.array( [[0, 0, 0], [0, mass_eigenvalues[0], 0], [0, 0, mass_eigenvalues[1]]] ) sm_ham = (1./(2*energy))*np.dot(sm_u, np.dot(mass_matrix, sm_u.conj().T)) if no_bsm: eg_vector = cardano_eqn(sm_ham) else: NP_U = angles_to_u((np_s12_2, np_c13_4, np_s23_2, np_dcp)) SC_U = np.array( [[0, 0, 0], [0, sc1, 0], [0, 0, sc2]] ) bsm_term = (energy**(dim-3)) * np.dot(NP_U, np.dot(SC_U, NP_U.conj().T)) bsm_ham = sm_ham + bsm_term eg_vector = cardano_eqn(bsm_ham) if check_uni: test_unitarity(eg_vector, rse=True, epsilon=epsilon) return eg_vector def flux_averaged_BSMu(theta, args, spectral_index, llh_paramset): if len(theta) != len(llh_paramset): raise AssertionError( 'Length of MCMC scan is not the same as the input ' 'params\ntheta={0}\nparamset]{1}'.format(theta, llh_paramset) ) for idx, param in enumerate(llh_paramset): param.value = theta[idx] bin_centers = np.sqrt(args.binning[:-1]*args.binning[1:]) bin_width = np.abs(np.diff(args.binning)) source_flux = np.array( [fr * np.power(bin_centers, spectral_index) for fr in args.source_ratio] ).T bsm_angles = llh_paramset.from_tag( [ParamTag.SCALE, ParamTag.MMANGLES], values=True ) m_eig_names = ['m21_2', 'm3x_2'] ma_names = ['s_12_2', 'c_13_4', 's_23_2', 'dcp'] if set(m_eig_names+ma_names).issubset(set(llh_paramset.names)): mass_eigenvalues = [x.value for x in llh_paramset if x.name in m_eig_names] sm_u = angles_to_u( [x.value for x in llh_paramset if x.name in ma_names] ) else: mass_eigenvalues = MASS_EIGENVALUES sm_u = NUFIT_U if args.no_bsm: fr = u_to_fr(source_flux, np.array(sm_u, dtype=np.complex256)) else: mf_perbin = [] for i_sf, sf_perbin in enumerate(source_flux): u = params_to_BSMu( bsm_angles = bsm_angles, dim = args.dimension, energy = bin_centers[i_sf], mass_eigenvalues = mass_eigenvalues, sm_u = sm_u, no_bsm = args.no_bsm, texture = args.texture, ) fr = u_to_fr(sf_perbin, u) mf_perbin.append(fr) measured_flux = np.array(mf_perbin).T intergrated_measured_flux = np.sum(measured_flux * bin_width, axis=1) averaged_measured_flux = (1./(args.binning[-1] - args.binning[0])) * \ intergrated_measured_flux fr = averaged_measured_flux / np.sum(averaged_measured_flux) return fr
[docs]def test_unitarity(x, prnt=False, rse=False, epsilon=None): """Test the unitarity of a matrix. Parameters ---------- x : numpy ndarray Matrix to evaluate prnt : bool Print the result rse : bool Raise Assertion if matrix is not unitary Returns ---------- numpy ndarray Examples ---------- >>> from fr import test_unitarity >>> x = np.identity(3) >>> print(test_unitarity(x)) array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) """ f = np.abs(np.dot(x, x.conj().T), dtype=DTYPE) if prnt: print('Unitarity test:\n{0}'.format(f)) if rse: if not np.abs(np.trace(f) - 3.) < epsilon or \ not np.abs(np.sum(f) - 3.) < epsilon: raise AssertionError( 'Matrix is not unitary!\nx\n{0}\ntest ' 'u\n{1}'.format(x, f) ) return f
[docs]def u_to_fr(source_fr, matrix): """Compute the observed flavor ratio assuming decoherence. Parameters ---------- source_fr : list, length = 3 Source flavor ratio components matrix : numpy ndarray, dimension 3 Mixing matrix Returns ---------- Measured flavor ratio Examples ---------- >>> from fr import params_to_BSMu, u_to_fr >>> print(u_to_fr((1, 2, 0), params_to_BSMu((0.2, 0.3, 0.5, 1.5, -20), 3, 1000))) array([ 0.33740075, 0.33176584, 0.33083341]) """ try: composition = np.einsum( 'ai, bi, a -> b', np.abs(matrix)**2, np.abs(matrix)**2, source_fr, ) except: matrix = np.array(matrix, dtype=np.complex256) composition = np.einsum( 'ai, bi, a -> b', np.abs(matrix)**2, np.abs(matrix)**2, source_fr, ) pass ratio = composition / np.sum(source_fr) return ratio